Protein complex prediction based on maximum matching with domain-domain interaction.
نویسندگان
چکیده
With the development of high-throughput methods for identifying protein-protein interactions, large scale interaction networks are available. Computational methods to analyze the networks to detect functional modules as protein complexes are becoming more important. However, most of the existing methods only make use of the protein-protein interaction networks without considering the structural limitations of proteins to bind together. In this paper, we design a new protein complex prediction method by extending the idea of using domain-domain interaction information. Here we formulate the problem into a maximum matching problem (which can be solved in polynomial time) instead of the binary integer linear programming approach (which can be NP-hard in the worst case). We also add a step to predict domain-domain interactions which first searches the database Pfam using the hidden Markov model and then predicts the domain-domain interactions based on the database DOMINE and InterDom which contain confirmed DDIs. By adding the domain-domain interaction prediction step, we have more edges in the DDI graph and the recall value is increased significantly (at least doubled) comparing with the method of Ozawa et al. (2010) [1] while the average precision value is slightly better. We also combine our method with three other existing methods, such as COACH, MCL and MCODE. Experiments show that the precision of the combined method is improved. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction.
منابع مشابه
Discovering Domains Mediating Protein Interactions
Background: Protein-protein interactions do not provide any direct information regarding the domains within the proteins that mediate the interactions. The majority of proteins are multi domain proteins and the interaction between them is often defined by the pairs of their domains. Most of the former studies focus only on interacting domain pairs. However they do not consider the in...
متن کاملEffects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation
Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...
متن کاملPrediction of dispersed mineralization zone in depth using frequency domain of surface geochemical data
Discrimination of the blind and dispersed mineralization deposits is a challenging problem in geochemical exploration. The frequency domain (FD) of the surface geochemical data can solve this important issue. This new exploratory information can be achieved using the interpretation of FD of geochemical data, which is impossible in spatial domain. In this research work, FD of the surface geochem...
متن کاملPrediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks
Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...
متن کاملIn Silico Characterization of Proteins Containing ARID-PHD Domain and Its Expression in Aeluropus littoralis Halophyte
Abiotic stresses are the most important factors that reduce the yield of crops. In this case, Bioinformatics analysis plays an important role to study genes, and their relatedness as well as prediction their function in response to abiotic stresses. Among all domains, ARID-PHD domain has been identified in plants and animals and has a very significant role in growth regulation, cell cycle, and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochimica et biophysica acta
دوره 1824 12 شماره
صفحات -
تاریخ انتشار 2012